CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A finite element method with discontinuous rotations for the Mindlin-Reissner plate model

Peter Hansbo (Institutionen för matematiska vetenskaper, matematik) ; David Heintz (Institutionen för matematiska vetenskaper, matematik) ; M. G. Larson
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 200 (2011), 5-8, p. 638-648.
[Artikel, refereegranskad vetenskaplig]

We present a continuous-discontinuous finite element method for the Mindlin-Reissner plate model based on continuous polynomials of degree k >= 2 for the transverse displacements and discontinuous polynomials of degree k - 1 for the rotations. We prove a priori convergence estimates, uniformly in the thickness of the plate, and thus show that locking is avoided. We also derive a posteriori error estimates based on duality, together with corresponding adaptive procedures for controlling linear functionals of the error. Finally, we present some numerical results.

Nyckelord: Nitsche's method, Discontinuous Galerkin, Plate model, Error estimates, galerkin method, elasticity



Denna post skapades 2011-03-04. Senast ändrad 2012-02-13.
CPL Pubid: 137597

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Tillämpad matematik

Chalmers infrastruktur