CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

José Manuel Otero Romero (Institutionen för kemi- och bioteknik) ; Wanwipa Vongsangnak (Institutionen för kemi- och bioteknik, Systembiologi) ; Mohammad Asadollahi (Institutionen för kemi- och bioteknik) ; Roberto Olivares Hernandez (Institutionen för kemi- och bioteknik, Systembiologi) ; Jerome Maury ; Laurent Farinelli ; Loïc Barlocher ; Magne Österås ; Michel Schalk ; Anthony Clark ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
BMC Genomics (1471-2164). Vol. 11 (2010), p. 723.
[Artikel, refereegranskad vetenskaplig]

Background: The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. Results: In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e. g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. Conclusions: With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-03-01. Senast ändrad 2014-10-27.
CPL Pubid: 137456


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik (2005-2014)
Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)


Industriell bioteknik

Chalmers infrastruktur