CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Two-Scale Convergence of Stekloff Eigenvalue Problems in Perforated Domains

Hermann Douanla (Institutionen för matematiska vetenskaper, matematik)
Boundary Value Problems (1687-2762). Vol. 2010 (2010), p. 15.
[Artikel, refereegranskad vetenskaplig]

By means of the two-scale convergence method, we investigate the asymptotic behavior of eigenvalues and eigenfunctions of Stekloff eigenvalue problems in perforated domains. We prove a concise and precise homogenization result including convergence of gradients of eigenfunctions which improves the understanding of the asymptotic behavior of eigenfunctions. It is also justified that the natural local problem is not an eigenvalue problem.

Nyckelord: Homogenization, Stekloff eigenvalue problems, perforated domains.



Denna post skapades 2011-02-15. Senast ändrad 2016-08-15.
CPL Pubid: 136850

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematisk analys

Chalmers infrastruktur