CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Predictive Threat Assessment via Reachability Analysis and Set Invariance Theory

Paolo Falcone (Institutionen för signaler och system, Mekatronik ; SAFER - Fordons- och Trafiksäkerhetscentrum ) ; Mohammad Ali (Institutionen för signaler och system, Mekatronik) ; Jonas Sjöberg (Institutionen för signaler och system, Mekatronik)
IEEE Transactions on Intelligent Transportation Systems (1524-9050). Vol. 12 (2011), 4, p. 1352 - 1361.
[Artikel, refereegranskad vetenskaplig]

We propose two model-based threat assessment methods for semi-autonomous vehicles, i.e., human-driven vehicles with autonomous driving capabilities. Based on information about the surrounding environment, we introduce a set of constraints on the vehicle states, which are satisfied under “safe” driving conditions. Then, we formulate the threat assessment problem as a constraint satisfaction problem. Vehicle and driver mathematical models are used to predict future constraint violation, indicating the possibility of accident or loss of vehicle control, hence, the need to assist the driver. The two proposed methods differ in the models used to predict vehicle motion within the surrounding environment. We demonstrate the proposed methods in a roadway departure application and validate them through experimental data.

Nyckelord: Active Safety, Semi-Autonomous Vehicles, Threat Assessment, Decision Making, Reachability Analysis, Invariant Set Theory

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-02-08. Senast ändrad 2014-04-22.
CPL Pubid: 136615


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)