CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fundamental Limits of Wideband Localization— Part II: Cooperative Networks

Yuan Shen ; Henk Wymeersch (Institutionen för signaler och system, Kommunikationssystem) ; Moe Win
IEEE Transactions on Information Theory (0018-9448 ). Vol. 56 (2010), 10, p. 4981 - 5000 .
[Artikel, refereegranskad vetenskaplig]

The availability of position information is of great importance in many commercial, governmental, and military applications. Localization is commonly accomplished through the use of radio communication between mobile devices (agents) and fixed infrastructure (anchors). However, precise determination of agent positions is a challenging task, especially in harsh environments due to radio blockage or limited anchor deployment. In these situations, cooperation among agents can significantly improve localization accuracy and reduce localization outage probabilities. A general framework of analyzing the fundamental limits of wideband localization has been developed in Part I of the paper. Here, we build on this framework and establish the fundamental limits of wideband cooperative location-aware networks. Our analysis is based on the waveforms received at the nodes, in conjunction with Fisher information inequality. We provide a geometrical interpretation of equivalent Fisher information (EFI) for cooperative networks. This approach allows us to succinctly derive fundamental performance limits and their scaling behaviors, and to treat anchors and agents in a unified way from the perspective of localization accuracy. Our results yield important insights into how and when cooperation is beneficial.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-01-14. Senast ändrad 2016-12-06.
CPL Pubid: 133941

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)