CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The partition bundle of type AN-1 (2, 0) theory

Måns Henningson (Institutionen för fundamental fysik, Elementarpartikelfysik)
Journal of High Energy Physics (1126-6708). 4, (2011)
[Artikel, refereegranskad vetenskaplig]

Six-dimensional (2, 0) theory can be defined on a large class of six-manifolds endowed with some additional topological and geometric data (i.e. an orientation, a spin structure, a conformal structure, and an R-symmetry bundle with connection). We discuss the nature of the object that generalizes the partition function of a more conventional quantum theory. This object takes its values in a certain complex vector space, which fits together into the total space of a complex vector bundle (the 'partition bundle') as the data on the six-manifold is varied in its infinite-dimensional parameter space. In this context, an important role is played by the middle-dimensional intermediate Jacobian of the six-manifold endowed with some additional data (i.e. a symplectic structure, a quadratic form, and a complex structure). We define a certain hermitian vector bundle over this finite-dimensional parameter space. The partition bundle is then given by the pullback of the latter bundle by the map from the parameter space related to the six-manifold to the parameter space related to the intermediate Jacobian.

Nyckelord: Duality in Gauge Field Theories, Differential and Algebraic Geometry, Field Theories in Higher Dimensions, Topological Field Theories

Denna post skapades 2011-01-10. Senast ändrad 2016-10-06.
CPL Pubid: 132916


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fundamental fysik, Elementarpartikelfysik (2005-2013)



Chalmers infrastruktur