CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Adaptive Hybrid Finite Element/Difference method for Maxwell's equations

Larisa Beilina (Institutionen för matematiska vetenskaper) ; Marcus Grote
TWMS Journal of Pure and Applied Mathematics (1683-3511). Vol. 1 (2010), 2, p. 176-197.
[Artikel, refereegranskad vetenskaplig]

An explicit, adaptive, hybrid finite element/finite difference method is proposed for the numerical solution of Maxwell’s equations in the time domain. The method is hybrid in the sense that different numerical methods, finite elements and finite differences, are used in different parts of the computational domain. Thus, we combine the flexibility of finite elements with the efficiency of finite differences. Furthermore, an a posteriori error estimate is derived for local adaptivity and error control inside the subregion, where finite elements are used. Numerical experiments illustrate the usefulness of computational adaptive error control of proposed new method.

Denna post skapades 2010-12-16. Senast ändrad 2012-01-11.
CPL Pubid: 131092


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)


Tillämpad matematik

Chalmers infrastruktur