CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Adaptive Hybrid Finite Element/Difference method for Maxwell's equations: an a priory error estimate and efficiency

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik)
Applied and Computational Mathematics (ACM) (1683-3511). Vol. 9 (2010), 2, p. 176-197.
[Artikel, refereegranskad vetenskaplig]

In this work we extend our previous study where an explicit adaptive hybrid finite element/finite difference method was proposed for the numerical solution of Maxwell's equations in the time domain. Here we derive a priori error estimate in finite element method and present numerical examples where we indicate the rate of convergence of the hybrid method. We compare also hybrid finite element/finite difference method with pure finite element method and show that we devise an optimized method. In our three dimensional computations the hybrid approach is about 3 times faster than a corresponding highly optimized finite element method. We conclude that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations.

Nyckelord: Adaptive finite element methods; Efficiency; Error estimates; Hybrid finite element/finite difference method; Maxwell's equations; Reliability

Denna post skapades 2010-12-16. Senast ändrad 2016-07-14.
CPL Pubid: 131091


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Tillämpad matematik

Chalmers infrastruktur