CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Globally convergent numerical methods for coefficient inverse problems for imaging inhomogeneities

J. Xin ; Larisa Beilina (Institutionen för matematiska vetenskaper) ; Michael V. Klibanov
Computing in Science and Engineering, (CISE) (1521-9615). Vol. 12 (2010), 5, p. 64-77.
[Artikel, refereegranskad vetenskaplig]

How can we differentiate between an underground stone and a land mine? We discuss a class of methods for solving such problems. This class of methods concerns globally convergent numerical methods for Coefficient Inverse Problems, unlike conventional locally convergent algorithms. Numerical results are presented modeling imaging of the spatially distributed dielectric permittivity function in an environment where antipersonnel land mines are embedded along with stones. While these results are concerned with the first generation of globally convergent algorithms, images obtained by the most recent second generation are also presented for a generic case of imaging of the dielectric permittivity function. The mathematical apparatus is sketched only very briefly with references to corresponding publications.

Denna post skapades 2010-12-16. Senast ändrad 2012-03-19.
CPL Pubid: 131088


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)


Tillämpad matematik

Chalmers infrastruktur