CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue.

Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik) ; L. Thevenot
Nuovo Cimento della Societa Italiana di Fisica C (1124-1896). Vol. 33 (2010), 1, p. 21-29.
[Artikel, refereegranskad vetenskaplig]

The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (DG) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ω̃in R3 with a polygonal convex cross-section ω The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

Denna post skapades 2010-12-16. Senast ändrad 2016-07-13.
CPL Pubid: 131045


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Tillämpad matematik

Chalmers infrastruktur