CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Runaway electron drift orbits in magnetostatic perturbed fields

Gergely Papp (Institutionen för teknisk fysik, Nukleär teknik) ; Michael Drevlak ; Tünde Fülöp (Institutionen för teknisk fysik, Nukleär teknik) ; Per Helander ; Gergö Pokol
Proceedings of 23rd IAEA Fusion Energy Conference, Korea 2010 (2010)
[Konferensbidrag, refereegranskat]

Disruptions in large tokamaks can lead to the generation of a relativistic runaway electron beam that may cause serious damage to the first wall. To mitigate the disruption and suppress the runaway beam the application of resonant magnetic perturbations has been suggested. In this work we investigate the effect of resonant magnetic perturbations on the confinement of runaway electrons by simulating their drift orbits in magnetostatic perturbed fields and calculating the orbit losses for various initial energies and magnetic perturbation magnitudes. In the simulations we use a TEXTOR-like configuration and solve the relativistic, gyro-averaged drift equations for the runaway electrons including synchrotron radiation and collisions. The results indicate that runaway electrons are well confined in the core of the device, but the onset time of runaway losses closer to the edge is dependent on the magnetic perturbation level and thereby can affect the maximum runaway current. However, the runaway current damping rate is not sensitive to the magnetic perturbation level, in agreement with experimental observations.

Denna post skapades 2010-11-25. Senast ändrad 2014-09-02.
CPL Pubid: 129531


Institutioner (Chalmers)

Institutionen för teknisk fysik, Nukleär teknik (2006-2015)



Chalmers infrastruktur