CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Understanding adhesion at as-deposited interfaces from ab initio thermodynamics of deposition growth: thin-film alumina on titanium carbide

Jochen Rohrer (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Per Hyldgaard (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Journal of Physics: Condensed Matter (0953-8984). Vol. 22 (2010), 47, p. 472001.
[Artikel, refereegranskad vetenskaplig]

We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) (Rohrer and Hyldgaard 2010 Phys. Rev. B 82 045415). A previous study of this system (Rohrer et al 2010 J. Phys.: Condens. Matter 22 015004) found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite its industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extend the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2010-11-16. Senast ändrad 2015-12-17.
CPL Pubid: 129130


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Nanovetenskap och nanoteknik
Innovation och entreprenörskap (nyttiggörande)
Statistisk mekanik
Materialfysik med ytfysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Formation stability and electronic structure of surfaces and interfaces from first principles