CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A posteriori error estimates in a globally convergent FEM for a hyperbolic coefficient inverse problem

Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik) ; Larisa Beilina (Institutionen för matematiska vetenskaper, matematik)
Inverse Problems (0266-5611). Vol. 26 (2010), 11, p. Art. no. 115007.
[Artikel, refereegranskad vetenskaplig]

This study concerns a posteriori error estimates in a globally convergent numerical method for a hyperbolic coefficient inverse problem. Using the Laplace transform the model problem is reduced to a nonlinear elliptic equation with a gradient dependent nonlinearity. We investigate the behavior of the nonlinear term in both a priori and a posteriori settings and derive optimal a posteriori error estimates for a finite-element approximation of this problem. Numerical experiments justify the efficiency of a posteriori estimates in the globally convergent approach.

Nyckelord: reconstruction



Denna post skapades 2010-11-09. Senast ändrad 2016-07-14.
CPL Pubid: 128783

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Numerisk analys

Chalmers infrastruktur