CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Hardy space related to the square root of the Poisson kernel

Jonatan Vasilis (Institutionen för matematiska vetenskaper, matematik)
Studia Mathematica (0039-3223). Vol. 199 (2010), 3, p. 207-225.
[Artikel, refereegranskad vetenskaplig]

A real-valued Hardy space H-1 (T) subset of L-1 (T) related to the square root of the Poisson kernel in the unit disc is defined. The space is shown to be strictly larger than its classical counterpart H-1(T). A decreasing function is in H-i(T) if and only if the function is in the Orlicz space L log log L(T). In contrast to the case of H-1(T), there is no such characterization for general positive functions: every Orlicz space strictly larger than L log L(T) contains positive functions which do not belong to H-1(T), and no Orlicz space of type Delta(2) which is strictly smaller than L-1(T) contains every positive function in H-1(T): Finally, we have a characterization of certain eigenfunctions of the hyperbolic Laplace operator in terms of H-1(T).

Nyckelord: Hardy space, Poisson kernel, L log log L, approach regions, symmetric-spaces, convergence, eigenfunctions, theorems, laplacian, bidisk


Denna post skapades 2010-11-04.
CPL Pubid: 128611


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur