CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A time-domain model for coupled vertical and tangential wheel/rail interaction - a contribution to the modelling of curve squeal

Astrid Pieringer (Institutionen för bygg- och miljöteknik, Teknisk akustik, Vibroakustik) ; Wolfgang Kropp (Institutionen för bygg- och miljöteknik, Teknisk akustik, Vibroakustik)
Noise and Vibration Mitigation for Rail Transportation Systems: Proceedings of the 10th International Workshop on Railway Noise (IWRN10), 18-22 October 2010, Nagahama, Japan p. 221-229. (2010)
[Konferensbidrag, refereegranskat]

Lateral forces due to frictional instability are seen as the main reason for the occurrence of curve squeal. Predicting squeal requires thus to describe the high-frequency wheel/rail interaction during curving including the coupling between vertical and lateral directions. In this article, a time-domain approach is presented which includes both vertical and lateral forces and takes into account the non-linear processes in the contact zone. Track and wheel are described as linear systems using pre-calculated impulse response functions. The non-linear, non-steady state contact model is based on an influence function method for the elastic half-space, includes a velocity-dependent friction coefficient and accounts for surface roughness. First results from the interaction model demonstrate the functioning of the approach.

Nyckelord: curve squeal, wheel/rail interaction, stick/slip, velocity-dependant friction, time domain


Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 118



Denna post skapades 2010-11-01. Senast ändrad 2015-01-08.
CPL Pubid: 128404

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för bygg- och miljöteknik, Teknisk akustik, Vibroakustik

Ämnesområden

Akustik
Övrig teknisk mekanik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Time-domain modelling of high-frequency wheel/rail interaction