CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

All-optical phase and amplitude regenerator for next-generation telecommunications systems

Radan Slavík ; Francesca Parmigiani ; Joseph Kakande ; Carl Lundström (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Martin Sjödin (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Peter Andrekson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Ruwan Weerasuriya ; Stylianos Sygletos ; Andrew D. Ellis ; Lars Grüner-Nielsen ; D Jakobsen ; Søren Herstrøm ; Richard Phelan ; James O´Gorman ; Adonis Bogris ; Dimitris Syvridis ; Sonali Dasgupta ; Periklis Petropoulos ; David J. Richardson
Nature Photonics (1749-4885). Vol. 4 (2010), 10, p. 690-695.
[Artikel, refereegranskad vetenskaplig]

Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities. Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance—nonlinear phase noise. Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical (‘black-box’) all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.

Denna post skapades 2010-10-27. Senast ändrad 2014-09-02.
CPL Pubid: 128239


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik



Chalmers infrastruktur