CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Resource efficient plasmon-based 2D-photovoltaics with reflective support

Carl Hägglund (Institutionen för teknisk fysik, Kemisk fysik) ; S. Peter Apell (Institutionen för teknisk fysik, Kondenserade materiens teori)
Optics Express (1094-4087). Vol. 18 (2010), 103, p. A343-A356.
[Artikel, refereegranskad vetenskaplig]

For ultrathin (similar to 10 nm) nanocomposite films of plasmonic materials and semiconductors, the absorptance of normal incident light is typically limited to about 50%. However, through addition of a non-absorbing spacer with a highly reflective backside to such films, close to 100% absorptance can be achieved at a targeted wavelength. Here, a simple analytic model useful in the long wavelength limit is presented. It shows that the spectral response can largely be characterized in terms of two wavelengths, associated with the absorber layer itself and the reflective support, respectively. These parameters influence both absorptance peak position and shape. The model is employed to optimize the system towards broadband solar energy conversion, with the spectrally integrated plasmon induced semiconductor absorptance as a figure of merit. Geometries optimized in this regard are then evaluated in full finite element calculations which demonstrate conversion efficiencies of up to 64% of the Shockley-Queisser limit. This is achieved using only the equivalence of about 10 nanometer composite material, comprising Ag and a thin film solar cell layer of a-Si, CuInSe2 or the organic semiconductor MDMO-PPV. A potential for very resource efficient solar energy conversion based on plasmonics is thus demonstrated.

Nyckelord: solar-cells, optical-constants

Denna post skapades 2010-10-26. Senast ändrad 2014-03-24.
CPL Pubid: 128089


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kemisk fysik (1900-2015)
Institutionen för teknisk fysik, Kondenserade materiens teori (1900-2015)



Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Plasmon resonance for improving the absorption of solar cells (PRIMA) (EC/FP7/248154)