CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Coalescent approximation for structured populations in a stationary random environment

Serik Sagitov (Institutionen för matematiska vetenskaper, matematisk statistik) ; Peter Jagers (Institutionen för matematiska vetenskaper, matematisk statistik) ; V. Vatutin
Theoretical Population Biology (0040-5809). Vol. 78 (2010), 3, p. 192-199.
[Artikel, refereegranskad vetenskaplig]

We establish convergence to the Kingman coalescent for the genealogy of a geographically - or otherwise - structured version of the Wright-Fisher population model with fast migration. The new feature is that migration probabilities may change in a random fashion. This brings a novel formula for the coalescent effective population size (EPS). We call it a quenched EPS to emphasize the key feature of our model - random environment. The quenched EPS is compared with an annealed (mean-field) EPS which describes the case of constant migration probabilities obtained by averaging the random migration probabilities over possible environments.

Nyckelord: Kingman's coalescent, Structured Wright-Fisher model, Stationary random, environment, Quenched effective population size, Mohle's lemma, strong-migration limit, markov-chains, size, convergence



Denna post skapades 2010-10-26. Senast ändrad 2017-09-14.
CPL Pubid: 128080

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)

Ämnesområden

Matematisk statistik

Chalmers infrastruktur