CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method

Erik Burman ; Peter Hansbo (Institutionen för matematiska vetenskaper, matematik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 199 (2010), 41-44, p. 2680-2686.
[Artikel, refereegranskad vetenskaplig]

We propose a fictitious domain method where the mesh is cut by the boundary. The primal solution is computed only up to the boundary; the solution itself is defined also by nodes outside the domain, but the weak finite element form only involves those parts of the elements that are located inside the domain. The multipliers are defined as being element-wise constant on the whole (including the extension) of the cut elements in the mesh defining the primal variable. Inf–sup stability is obtained by penalizing the jump of the multiplier over element faces. We consider the case of a polygonal domain with possibly curved boundaries. The method has optimal convergence properties.

Nyckelord: Interior penalty, Fictitious domain, Finite element

Denna post skapades 2010-10-17. Senast ändrad 2012-01-25.
CPL Pubid: 127664


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Numerisk analys

Chalmers infrastruktur