CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Reliability-Centred Asset Maintenance – A step towards enhanced reliability, availability, and profitability of wind power plants

François Besnard (Institutionen för energi och miljö, Elteknik) ; Katharina Fischer (Institutionen för energi och miljö, Elteknik) ; Lina Bertling (Institutionen för energi och miljö, Elteknik)
In Proceedings of the IEEE PES Conference on Innovative Smart Grid Technologies Europe, 11-13 October 2010, Gothenburg, Sweden (2010)
[Konferensbidrag, refereegranskat]

Reliability and availability are key issues for the implementation of future sustainable power systems. This paper discusses the need, methods and challenges for maintenance optimization to improve the reliability, availability, and profitability of wind power plants being a major source of renewable energy today and in future “smart grids”. The present maintenance of wind power plants is extensive and costly, especially at offshore sites. The paper discusses approaches to maintenance strategy optimization aiming at reaching cost efficient maintenance and thus enhanced profitability of wind power plants. It presents results from practical case studies utilising the method of Reliability-Centred Asset Maintenance and highlights the factors that impact the benefit of the maintenance strategies. The results show that new solutions for condition monitoring of the drive train and blades in wind turbines can be cost-efficient with respect to the reliability and availability of wind turbines today.

Nyckelord: Reliability, availability, maintenance, optimization, wind power, wind turbine

Denna post skapades 2010-10-13. Senast ändrad 2011-01-11.
CPL Pubid: 127565


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för energi och miljö, Elteknik (2005-2017)


Tillämpad matematik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

On maintenance optimization for offshore wind farms