CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Title: van der Waals density functional calculations of binding in molecular crystals

Kristian Berland (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Øyvind Borck ; Per Hyldgaard (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)

A recent paper [J. Chem. Phys. 132, 134705 (2010)] illustrated the potential of the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004)] for efficient first-principle accounts of structure and cohesion in molecular crystals. Since then, modifications of the original vdW-DF version (identified as vdW-DF1) has been proposed, and there is also a new version called vdW-DF2 [ArXiv 1003.5255], within the vdW-DF framework. Here we investigate the performance and nature of the modifications and the new version for the binding of a set of simple molecular crystals: hexamine, dodecahedrane, C60, and graphite. These extended systems provide benchmarks for computational methods dealing with sparse matter. We show that a previously documented enhancement of non-local correlations of vdW-DF1 over an asymptotic atom-based account close to and a few A, beyond binding separation persists in vdW-DF2. The calculation and analysis of the binding in molecular crystals requires appropriate computational tools. In this paper, we also present details on our real-space parallel implementation of the vdW-DF correlation and on the method used to generate asymptotic atom-based pair potentials based on vdW-DF.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2010-10-07. Senast ändrad 2015-12-17.
CPL Pubid: 127379


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Nanovetenskap och nanoteknik
Den kondenserade materiens fysik
Struktur- och vibrationsfysik

Chalmers infrastruktur