CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A miniaturized flow reaction chamber for use in combination with QCM-D sensing

Gabriel Ohlsson (Institutionen för teknisk fysik, Biologisk fysik) ; Pauline Axelsson (Institutionen för teknisk fysik, Kemisk fysik) ; Joshua Henry (Institutionen för teknisk fysik, Kemisk fysik) ; Sarunas Petronis (Institutionen för teknisk fysik, Biologisk fysik) ; Sofia Svedhem (Institutionen för teknisk fysik, Biologisk fysik) ; Bengt Kasemo (Institutionen för teknisk fysik, Kemisk fysik)
Microfluidics and Nanofluidics (1613-4982). Vol. 9 (2010), 4-5, p. 705-716.
[Artikel, refereegranskad vetenskaplig]

A miniaturized flow chamber for quartz crystal microbalance with dissipation monitoring (QCM-D) has been developed. The main purpose was to reduce the total liquid sample consumption during an experiment, but also to gain advantages with respect to kinetics and mass transport by reducing the boundary diffusion layer. The bottom of the flow chamber is a QCM-D sensor surface, on which a polydimethylsiloxane spacer ring, fabricated onto a poly(methyl methacrylate) lid, is placed symmetrically around the QCM-D electrode (diameter similar to 10 mm). The spacer ring defines the inner chamber height (typically 40-50 mu m) and provides sealing. Through the lid, there are inlet and outlet channels. The typical chamber volume is in the range of 2.5-3.5 mu l (with a 10 mu l dead volume). In flow mode, we have operated the cell at flow rates of 6-50 mu l/min, i.e., volume turnovers of 2-17 per min. As a model system, to test the microcell, the formation of supported phospholipid bilayers on a SiO2 surface was studied. For comparison, the same process was studied in a commercially available QCM-D equipment with significantly larger total volume (by a factor of 20). The decrease in effective sample consumption to produce a bilayer on the sensor surface in the chamber was approximately proportional to the decrease in chamber volume. Smaller volume also reduced the liquid exchange time. Potential improvements of the chamber include further optimization of the flow profile and, in addition, further miniaturization by decreasing the chamber height and the sensor radius.

Nyckelord: Miniaturized flow chamber, Biosensor, QCM-D, Supported lipid bilayers, Boundary layer diffusion, quartz-crystal microbalance, surface-plasmon resonance, supported, lipid-bilayers, vesicle adsorption, immersion angle, cell culture, real-time, membrane, binding, fabrication



Denna post skapades 2010-09-17. Senast ändrad 2011-10-30.
CPL Pubid: 126540

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)
Institutionen för teknisk fysik, Kemisk fysik (1900-2015)

Ämnesområden

Fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Small-Scale Sample Handling for Studies of Liquid Crystals and Lipid-Based Soft Matter