CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Reiterated Homogenization of Linear Eigenvalue Problems in Multiscale Perforated Domains Beyond the Periodic Setting

Hermann Douanla (Institutionen för matematiska vetenskaper, matematik) ; Nils Svanstedt (Institutionen för matematiska vetenskaper, matematik)
Communications in Mathematical Analysis (1938-9787). Vol. 11 (2011), 1, p. 61-93.
[Artikel, refereegranskad vetenskaplig]

Reiterated homogenization of linear elliptic Neuman eigenvalue problems in multiscale perforated domains is considered beyond the periodic setting. The classical periodicity hypothesis on the coefficients of the operator is here substituted on each microscale by an abstract hypothesis covering a large set of concrete behaviors such as the periodicity, the almost periodicity, the weakly almost periodicity and many more besides. Furthermore, the usual double periodicity is generalized by considering a type of structure where the perforations on each scale follow not only the periodic distribution but also more complicated but realistic ones. Our main tool is Nguetseng’s Sigma convergence.

Nyckelord: Reiterated homogenization, ergodic algebra, algebra with mean value, eigenvalue problem, multiscale perforation.

Denna post skapades 2010-08-27. Senast ändrad 2016-07-21.
CPL Pubid: 125348


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Matematisk analys

Chalmers infrastruktur