CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Design of microwave circuits in ridge gap waveguide technology

E. Alfonso ; Mariano Baquero ; Per-Simon Kildal (Institutionen för signaler och system, Antenner) ; A. Valero-Nogueira ; Eva Rajo-Iglesias (Institutionen för signaler och system, Antenner) ; J. I. Herranz
IEEE MTT 2010 International Microwave Symposium (IMS2010), Anaheim, CA, May 23-28, 2010 (0149-645X). p. 1544 - 1547 . (2010)
[Konferensbidrag, refereegranskat]

This paper presents recent advances is a new waveguiding technology referred to as ridge gap waveguides. The main advantages of the ridge gap waveguides compared to hollow waveguides are that they are planar and much cheaper to manufacture, in particular at high frequencies such as for millimeter and submillimeter waves. In these waveguides there are no mechanical joints across which electric currents must float. The gap waveguides have lower losses than microstrip lines, and they are completely shielded by metal so no additional packaging is needed, in contrast to the severe packaging problems associated with microstrip circuits. The gap waveguides are realized in a narrow gap between two parallel metal plates by using a texture on one of the surfaces. The waves follow metal ridges in the textured surface. All wave propagation in other directions is prohibited (in cutoff) by realizing a high impedance (ideally a perfect magnetic conductor) through the textured surface at both sides of all ridges. Thereby, cavity resonances do not appear within the band of operation. The paper studies the characteristic impedance of the line and presents simulations and measurements of circuits designed using this technology.



Denna post skapades 2010-08-24. Senast ändrad 2013-08-23.
CPL Pubid: 125109

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system, Antenner (2005-2014)

Ämnesområden

Elektroteknik och elektronik

Chalmers infrastruktur