CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Diamond cubic phase of monoolein and water as an amphiphilic matrix for electrophoresis of oligonucleotides

Nils Carlsson (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; AS Winge (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Sven Engström (Institutionen för kemi- och bioteknik, Teknisk ytkemi) ; Björn Åkerman (Institutionen för kemi- och bioteknik, Fysikalisk kemi)
JOURNAL OF PHYSICAL CHEMISTRY B Vol. 109 (2005), 39, p. 18628-18636.
[Artikel, refereegranskad vetenskaplig]

We used a cubic liquid crystal formed by the nonionic monoglyceride monoolein and water as a porous matrix for the electrophoresis of oligonucleotides. The diamond cubic phase is thermodynamically stable when in contact with a water-rich phase, which we exploit to run the electrophoresis in the useful submarine mode. Oligonucleotides are separated according to size and secondary structure by migration through the space-filling aqueous nanometer pores of the regular liquid crystal, but the comparatively slow migration means the cubic phase will not be a replacement for the conventional DNA gels. However, our demonstration that the cubic phase can be used in submarine electrophoresis opens up the possibility for a new matrix for electrophoresis of amphiphilic molecules. From this perspective, the results on the oligonucleotides show that water-soluble particles of nanometer size, typical for the hydrophilic parts of membrane-bound proteins, may be a useful separation motif. A charged contamination in the commercial sample of monoolein, most likely oleic acid that arises from its hydrolysis, restricts useful buffer conditions to a pH below 5.6.

Denna post skapades 2006-01-19. Senast ändrad 2015-02-11.
CPL Pubid: 12496


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)
Institutionen för kemi- och bioteknik, Teknisk ytkemi (2005-2014)


Yt- och kolloidkemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Spectroscopic studies of biomolecules confined in self-assembled nanostructures