CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Growth of balls of holomorphic sections and energy at equilibrium

Robert Berman (Institutionen för matematiska vetenskaper, matematik) ; S. Boucksom
Inventiones Mathematicae (0020-9910). Vol. 181 (2010), 2, p. 337-394.
[Artikel, refereegranskad vetenskaplig]

Let L be a big line bundle on a compact complex manifold X. Given a non-pluripolar compact subset K of X and a continuous Hermitian metric e (-phi) on L, we define the energy at equilibrium of (K,phi) as the Monge-AmpSre energy of the extremal psh weight associated to (K,phi). We prove the differentiability of the energy at equilibrium with respect to phi, and we show that this energy describes the asymptotic behaviour as k -> a of the volume of the sup-norm unit ball induced by (K,k phi) on the space of global holomorphic sections H (0)(X,kL). As a consequence of these results, we recover and extend Rumely's Robin-type formula for the transfinite diameter. We also obtain an asymptotic description of the analytic torsion, and extend Yuan's equidistribution theorem for algebraic points of small height to the case of a big line bundle.

Nyckelord: transfinite diameter, kahler-metrics, line bundle, manifolds, equidistribution, polynomials, currents, kernels, space

Denna post skapades 2010-08-12.
CPL Pubid: 124434


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur