CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Formation of Highly Rovibrationally Excited Ammonia from Dissociative Recombination of NH4+

Patrik U Andersson ; Jenny Öjekull ; Jan B. C. Pettersson ; Nikola Markovic (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; F. Hellberg ; R.D. Thomas ; A. Ehlerding ; F. Osterdahl ; Vitali Zhaunerchyk ; W. Geppert ; M. af Ugglas ; M. Larsson ; E. Uggerud ; H. Danared ; A. Källberg
The Journal of Physical Chemistry Letters (1948-7185). Vol. 1 (2010), 17, p. 2519–2523.
[Artikel, refereegranskad vetenskaplig]

The internal energy distribution of ammonia formed in the dissociative recombination (DR) of NH4+ with electrons has been studied by an imaging technique at the ion storage ring CRYRING. The DR process resulted in the formation of NH3 + H (0.90 ± 0.01), with minor contributions from channels producing NH2 + H2 (0.05 ± 0.01) and NH2 + 2H (0.04 ± 0.02). The formed NH3 molecules were highly internally excited, with a mean rovibrational energy of 3.3 ± 0.4 eV, which corresponds to 70% of the energy released in the neutralization process. The internal energy distribution was semiquantitatively reproduced by ab initio direct dynamics simulations, and the calculations suggested that the NH3 molecules are highly vibrationally excited while rotational excitation is limited. The high internal excitation and the translational energy of NH3 and H will influence their subsequent reactivity, an aspect that should be taken into account when developing detailed models of the interstellar medium and ammonia-containing plasmas.

Nyckelord: dissociative recombination; ammonia; ammonium ion; storage ring; imaging technique; internal energy; direct dynamics

Denna post skapades 2010-08-11. Senast ändrad 2016-04-25.
CPL Pubid: 124394


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi (2001-2011)
Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)


Fysikalisk kemi

Chalmers infrastruktur