CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fe2O3 on Ce-, Ca- or Mg-stabilized ZrO2 as oxygen carrier for chemical-looping combustion using NiO as additive

Magnus Rydén (Institutionen för energi och miljö, Energiteknik) ; Marcus Johansson (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; Erik Cleverstam (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; Anders Lyngfelt (Institutionen för energi och miljö, Energiteknik) ; Tobias Mattisson (Institutionen för energi och miljö, Energiteknik)
AiChe Journal (0001-1541). Vol. 56 (2010), 8, p. 2211-2220.
[Artikel, refereegranskad vetenskaplig]

Oxygen-carrier particles for chemical-looping combustion have been manufactured by freeze granulation. The particles consisted of 60 wt % Fe2O3 as active phase and 40 wt % stabilized ZrO2 as support material. Ce, Ca, or Mg was used to stabilize the ZrO2. The hardness and porosity of the particles were altered by varying the sintering temperature. The oxygen carriers were examined by redox experiments in a batch fluidized- bed reactor at 800–950°C, using CH4 as fuel. The experiments showed good reactivity between the particles and CH4. NiO was used as an additive and was found to reduce the fraction of unconverted CH4 with up to 80%. The combustion efficiency was 95.9% at best and was achieved using 57 kg oxygen carrier per MW fuel. Most produced oxygen carriers appear to have been decently stable, but using Ca as stabilizer resulting in uneven results. Further, particles sintered at high temperatures had a tendency to defluidize.

Nyckelord: chemical-looping combustion; iron oxide; nickel oxide; zirconia; natural gas



Denna post skapades 2010-08-02. Senast ändrad 2016-12-05.
CPL Pubid: 124030

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för energi och miljö, Energiteknik
Institutionen för kemi- och bioteknik, Oorganisk miljökemi (2005-2014)

Ämnesområden

Kemisk energiteknik
Katalys

Chalmers infrastruktur