CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Bayesian Data Fusion for Distributed Target Detection in Sensor Networks

M. Guerriero ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; P. Willet
IEEE Transactions on Signal Processing (1053-587X ). Vol. 58 (2010), 6, p. 3417-3421.
[Artikel, refereegranskad vetenskaplig]

In this correspondence, we study different approaches for Bayesian data fusion for distributed target detection in sensor networks. Due to communication and bandwidth constraints, we assume that each sensor can only transmit a local decision to the fusion center (FC), which is in charge to take the final decision about the presence of a target. The optimal Bayesian test statistic at the FC is derived in the case where both the number and locations of the sensors are known. On the other hand, if both the number and the locations of the sensors are unknown, the optimal Bayesian test statistic is computed based on the same observations that the Scan Statistic test utilizes. The performances of the different approaches are compared through simulation.

Nyckelord: Counting rule, data fusion, generalized likelihood ratio test (GLRT), scan statistic, sensor network (SN)

Denna post skapades 2010-06-11.
CPL Pubid: 122656


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling


Information Technology

Chalmers infrastruktur