CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik) ; M. V. Klibanov
Journal of Inverse and Ill-Posed Problems (0928-0219). Vol. 18 (2010), 1, p. 85-132.
[Artikel, refereegranskad vetenskaplig]

A globally convergent numerical method for a 3-Dimensional Coefficient Inverse Problem for a hyperbolic equation is presented. A new globally convergent theorem is proven. It is shown that this technique provides a good first guess for the Finite Element Adaptive method (adaptivity) method. This leads to a synthesis of both approaches. Numerical results are presented.

Nyckelord: Two-stage numerical procedure, globally convergent numerical method, adaptive finite element method, SCATTERING, RECONSTRUCTION



Denna post skapades 2010-06-08. Senast ändrad 2016-07-14.
CPL Pubid: 122453

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur