CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Optical Forces in Plasmonic Nanoparticle Dimers

Vladimir D. Miljkovic (Institutionen för teknisk fysik, Bionanofotonik) ; Tavakol Pakizeh (Institutionen för teknisk fysik, Bionanofotonik) ; B. Sepulveda ; Peter Johansson (Institutionen för teknisk fysik, Bionanofotonik) ; Mikael Käll (Institutionen för teknisk fysik, Bionanofotonik)
Journal of Physical Chemistry C (1932-7447). Vol. 114 (2010), 16, p. 7472-7479.
[Artikel, refereegranskad vetenskaplig]

We present calculations of the optical forces between two metal nanospheres forming a hybridized plasmonic chiller. We consider homo- and heterodimers and investigate different plane wave illumination configurations. The forces between the particles are calculated using kill Mie theory combined with the Maxwell stress tensor (MST) formalism, as well as by approximate methods, such as the Lorentz force (LF) approach taken in the dipole limit and calculations based on an optical potential. We show that the simplified calculation schemes can lead to serious errors in the case of strongly interacting particles and low damping. In particular, we find that equilibrium configurations, corresponding to vanishing optical forces, only are possible for homodimers illuminated in the end-fire configuration and for heterodimers, although multipolar effects and clamping radically reduce the repulsive interactions in the latter case.

Nyckelord: ENHANCED RAMAN-SCATTERING, DISCRETE-DIPOLE APPROXIMATION, METAL, NANOPARTICLES, SILVER ELECTRODE, RADIATION FORCES, SPECTROSCOPY, PARTICLES, MOLECULES, TWEEZERS, PYRIDINE



Denna post skapades 2010-06-08. Senast ändrad 2014-03-24.
CPL Pubid: 122439

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)

Ämnesområden

Fysikalisk kemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Simulations of directionality effects and optical forces in plasmonic nanostructures