CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Variationally consistent computational homogenization of transient heat flow

Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fang Su (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
International Journal for Numerical Methods in Engineering (0029-5981). Vol. 81 (2010), 13, p. 1659-1686.
[Artikel, refereegranskad vetenskaplig]

A framework for variationally consistent homogenization, combined with a generalized macrohomogeneity condition, is exploited for the analysis of non-linear transient heat conduction. Within this framework the classical approach of (model-based) first-order homogenization for stationary problems is extended to transient problems. Homogenization is then carried out in the spatial domain on representative volume elements (RVE), which are (in practice) introduced in quadrature points in standard fashion. Along with the classical averages, a higher order conservation quantity is obtained. An iterative FE2-algorithm is devised for the case of non-linear diffusion and storage coefficients, and it is applied to transient heat conduction in a strongly heterogeneous particle composite. Parametric Studies are carried Out, in particular with respect to the influence of the 'internal length' associated with the second-order conservation quantity. Copyright (C) 2009 John Wiley & Sons, Ltd.

Nyckelord: computational homogenization, transient, heat flow, nonlocal dispersive model, heterogeneous materials, wave-propagation, simulation, solids, scales, media

Denna post skapades 2010-04-22. Senast ändrad 2015-06-12.
CPL Pubid: 120222


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)


Teknisk mekanik

Chalmers infrastruktur