CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Active Region Design for High-Speed 850-nm VCSELs

S. B. Healy ; E. P. O'Reilly ; Johan S. Gustavsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Petter Westbergh (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Åsa Haglund (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Anders Larsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; A. Joel
IEEE Journal of Quantum Electronics (0018-9197). Vol. 46 (2010), 4, p. 506-512.
[Artikel, refereegranskad vetenskaplig]

Higher speed short-wavelength (850 nm) VCSELs are required for future high-capacity, short-reach data communication links. The modulation bandwidth of such devices is intrinsically limited by the differential gain of the quantum wells (QWs) used in the active region. We present gain calculations using an 8-band k.p Hamiltonian which show that the incorporation of 10% In in an InGaAs/AlGaAs QW structure can approximately double the differential gain compared to a GaAs/AlGaAs QW structure, with little additional improvement achieved by further increasing the In composition in the QW. This improvement is confirmed by extracting the differential gain value from measurements of the modulation response of VCSELs with optimized InGaAs/AlGaAs QW and conventional GaAs/AlGaAs QW active regions. Excellent agreement is obtained between the theoretically and experimentally determined values of the differential gain, confirming the benefits of strained InGaAs QW structures for high-speed 850-nm VCSEL applications.

Nyckelord: Differential gain, high speed, vertical-cavity surface-emitting laser, (VCSEL), quantum-well lasers, surface-emitting lasers, high-efficiency, gbit/s

Denna post skapades 2010-03-10. Senast ändrad 2016-04-11.
CPL Pubid: 117607


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik


Teknisk fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

High Speed Vertical Cavity Surface Emitting Lasers for Short Reach Communication