CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Point defects and ion conduction in solid oxides: a first-principles case study of La2Zr2O7

B. Joakim Nyman (Institutionen för teknisk fysik, Material- och ytteori)
Göteborg : Chalmers University of Technology, 2010. - 56 s.
[Licentiatavhandling]

In the endeavor to attain a clean environment and sustainable energy consumption, the notion of a future hydrogen economy stands out as one of the grandest visions. Striving for this vision, a critical task lies in optimizing the performance of the fuel-cell devices responsible for extracting electric power from the energy stored in hydrogen molecules. Of particular interest in several applications are solid oxide fuel cells, in which a ceramic electrolyte material is used. In this class of electrolytes, enhancing the conductivity of protons and/or oxygen ions represents the greatest challenge.

The aim of the project culminating in the present thesis was to elucidate some atomic-scale mechanisms which are important for the understanding and enhancement of protonic and oxygen-ionic conductivity in solid oxide electrolytes. More specifically, properties directly pertained to the mobility and concentration of protons in the pyrochlore-structured oxide La2Zr2O7 have been investigated by means of first-principles atomistic methods based on density-functional theory. Of particular interest has been the migration of protons and the effect of acceptor doping on the equilibrium concentration of oxygen vacancies. The latter is known to have direct implications on the concentration of protons via the hydration reaction.

As an outcome of the calculations it has been concluded that under typical synthesis conditions an increased equilibrium concentration of oxygen vacancies in La2Zr2O7 can, via a charge-compensating mechanism, indeed be achieved by acceptor doping the material. More expressly the vacancy concentration can be significantly affected by dopant species, which implicates the possibility of optimizing proton concentration in the material by a careful choice of dopant. Furthermore, the energetically preferred proton positions in the material has been pinpointed, along with a continuous migration pathway which enables long-range proton transport. Finally, the choice of dopant species has been shown to affect the mobility of both protons and oxygen vacancies via a trapping effect due to pair interaction with the dopant.

Nyckelord: hydrogen economy, hydrogen, fuel cell, solid oxide fuel cell, SOFC, ceramic electrolyte, ion conduction, point defect, acceptor doping, charge compensation, self compensation, oxygen vacancy, proton, trapping, defect cluster, solid oxide, pyrochlore, lanthanum zirconate, La2Zr2O7, computational methods, first principles, DFT



Denna post skapades 2010-03-05.
CPL Pubid: 117321

 

Institutioner (Chalmers)

Institutionen för teknisk fysik, Material- och ytteori (1900-2015)

Ämnesområden

Den kondenserade materiens fysik
Halvledarfysik
Elektronstruktur
Defekter och diffusion

Chalmers infrastruktur

Examination

Datum: 2010-03-31
Tid: 15:15
Lokal: Fasrummet (A820), MC2
Opponent: Dr Anders Hellman