CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A quantitative approach for polymerase chain reactions based on a hidden Markov model

Nadia Lalam (Institutionen för matematiska vetenskaper, matematisk statistik)
Journal of Mathematical Biology (0303-6812). Vol. 59 (2009), 4, p. 517-533.
[Artikel, refereegranskad vetenskaplig]

Polymerase chain reaction (PCR) is a major DNA amplification technology from molecular biology. The quantitative analysis of PCR aims at determining the initial amount of the DNA molecules from the observation of typically several PCR amplifications curves. The mainstream observation scheme of the DNA amplification during PCR involves fluorescence intensity measurements. Under the classical assumption that the measured fluorescence intensity is proportional to the amount of present DNA molecules, and under the assumption that these measurements are corrupted by an additive Gaussian noise, we analyze a single amplification curve using a hidden Markov model(HMM). The unknown parameters of the HMM may be separated into two parts. On the one hand, the parameters from the amplification process are the initial number of the DNA molecules and the replication efficiency, which is the probability of one molecule to be duplicated. On the other hand, the parameters from the observational scheme are the scale parameter allowing to convert the fluorescence intensity into the number of DNA molecules and the mean and variance characterizing the Gaussian noise. We use the maximum likelihood estimation procedure to infer the unknown parameters of the model from the exponential phase of a single amplification curve, the main parameter of interest for quantitative PCR being the initial amount of the DNA molecules. An illustrative example is provided.

Nyckelord: Data analysis, Hidden Markov model, Molecular biology, Monte Carlo, expectation maximization algorithm, Polymerase chain reaction, real-time pcr, maximum-likelihood estimator, em algorithm, monte-carlo, statistical-analysis, efficiency, amplification, distributions, maximization, convergence

Denna post skapades 2010-03-01.
CPL Pubid: 116681


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)


Tillämpad matematik

Chalmers infrastruktur