CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Optimization of La2O3-containing diopside based glass-ceramic sealants for fuel cell applications

Ashutosh Goel (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; D. U. Tulyaganov ; V. V. Kharton ; A. A. Yaremchenko ; Sten G. Eriksson (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; J. M. F. Ferreira
Journal of Power Sources (0378-7753). Vol. 189 (2009), 2, p. 1032-1043.
[Artikel, refereegranskad vetenskaplig]

We report on the optimization of La2O3-containing diopside based glass-ceramics (GCs) for sealant applications in solid oxide fuel cells (SOFC). Seven glass compositions were prepared by modifying the parent glass composition, Ca0.8Ba0.1MgAl0.1La0.1Si1.9O6. First five glasses were prepared by the addition of different amounts of B2O3 in a systematic manner (i.e. 2, 5, 10, 15, 20 wt.%) to the parent glass composition while the remaining two glasses were derived by substituting SrO for BaO in the glasses containing 2 wt.% and 5 wt.% B2O3. Structural and thermal behavior of the glasses was investigated by infrared spectroscopy (FTIR), density measurements, dilatometry and differential thermal analysis (DTA). Liquid-liquid amorphous phase separation was observed in B2O3-containing glasses. Sintering and crystallization behavior, microstructure, and properties of the GCs were investigated under different heat treatment conditions (800 and 850 degrees C: 1-300 h). The GCs with >5 wt.% B2O3 showed an abnormal thermal expansion behavior above 600 degrees C. The chemical interaction behavior of the glasses with SOFC electrolyte and metallic interconnects, has been investigated in air atmosphere at SOFC operating temperature. Thermal shock resistance and gas-tightness of GC sealants in contact with 8YSZ was evaluated in air and water. The total electrical resistance of a model cell comprising Crofer 22 APU and 8YSZ plates joined by a CC sealant has been examined by the impedance spectroscopy. Good matching of thermal expansion coefficients (CTE) and strong, but not reactive, adhesion to electrolyte and interconnect, in conjunction with a low level of electrical conductivity, indicate that the investigated GCs are suitable candidates for further experimentation as SOFC sealants. (C) 2009 Elsevier B.V. All rights reserved.

Nyckelord: Glass-ceramic sealant, Solid oxide fuel cell (SOFC), Coefficient of, thermal expansion (CTE), Interaction, Interconnect, crystallization, barium, sofc



Denna post skapades 2010-02-26.
CPL Pubid: 115614

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Oorganisk miljökemi (2005-2014)

Ämnesområden

Oorganisk kemi

Chalmers infrastruktur