CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging

Anders Gunnarsson (Institutionen för teknisk fysik, Biologisk fysik) ; Peter Jönsson (Institutionen för teknisk fysik, Biologisk fysik) ; Vladimir P. Zhdanov (Institutionen för teknisk fysik, Biologisk fysik) ; Fredrik Höök (Institutionen för teknisk fysik, Biologisk fysik)
Nucleic Acids Research (0305-1048). Vol. 37 (2009), 14, p. e99 (art no).
[Artikel, refereegranskad vetenskaplig]

A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time for high affinity binders (K-d < 1 nM, k(off) < 0.01 s(-1)) to be collected under equilibrium conditions at low pM concentrations. The mismatch discrimination obtained from the residence time data was shown to be concentration and temperature independent in intervals of 1-100 pM and 23-46 degrees C, respectively. This suggests the method as a robust means for detection of point mutations at low target concentrations in, for example, single nucleotide polymorphism (SNP) analysis.

Nyckelord: surface-plasmon resonance, density oligonucleotide arrays, dna, hybridization, nucleotide polymorphisms, nucleic-acids, base-pairs, microarrays, nanoparticles, dissociation, sequence

Denna post skapades 2010-02-26.
CPL Pubid: 115413


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Probing Biomolecular Recognition at the Single Molecule Level