CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Holomorphic Morse inequalities on manifolds with boundary

Robert Berman (Institutionen för matematiska vetenskaper, matematik)
Annales De L Institut Fourier (0373-0956). Vol. 55 (2005), 4, p. 1055-.
[Artikel, refereegranskad vetenskaplig]

Let X be a compact complex manifold with boundary and let L-k be a high power of a hermitian holomorphic line bundle over X. When X has no boundary, Demailly's holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in Lk, in terms of the curvature of L. We extend Demailly's inequalities to the case when X has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the boundary. Examples are given that show that the inequalities are sharp.

Nyckelord: line bundles, cohomology, harmonic forms, holomorphic sections, Bergman, kernel

Denna post skapades 2010-02-25.
CPL Pubid: 115000


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur