CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A design for a subminiature, low energy scanning electron microscope with atomic resolution

D. A. Eastham ; P. Edmondson ; S. Greene ; S. Donnelly ; Eva Olsson (Institutionen för teknisk fysik, Mikroskopi och mikroanalys) ; Krister Svensson (Institutionen för teknisk fysik, Mikroskopi och mikroanalys) ; A. Bleloch
Journal of Applied Physics (0021-8979). Vol. 105 (2009), 1, p. 014702 (artno).
[Artikel, refereegranskad vetenskaplig]

We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 mu m, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1-0.2 nm (1-2 angstrom). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 angstrom) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1 x 10(6) times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3058602]



Denna post skapades 2010-02-24. Senast ändrad 2014-11-27.
CPL Pubid: 114705

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Mikroskopi och mikroanalys (2005-2012)

Ämnesområden

Övrig teknisk fysik

Chalmers infrastruktur