CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Macroscopic defects in GaN/AlN multiple quantum well structures grown by MBE on GaN templates

Thorvald Andersson (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik) ; Xinyu Liu (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik) ; T. Aggerstam ; P. Holmstrom ; S. Lourdudoss ; L. Thylen ; Y. L. Chen ; C. H. Hsieh ; I. Lo
Microelectronics Journal (0026-2692). Vol. 40 (2009), 2, p. 360-362.
[Artikel, refereegranskad vetenskaplig]

We have used MBE to grow in AlN/GaN superlattices, with different number of periods, on 2.5-mu m-thick MOVPE-GaN templates to study the development of defects such as surface deformation due to strain. After growth the samples were studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), XRD and Fourier transform infrared spectroscopy (FT-IR). The strain increased with the number of quantum wells (QWs) and eventually caused defects such as microcracks visible by optical microscopy at four or more QW periods. High-resolution TEM images showed shallow recessions on the surface (surface deformation) indicating formation of microcracks in the MQW region. The measured intersubband (IS) absorption linewidth from a four period structure was 97 meV, which is comparable with the spectrum from a 10 period structure at an absorption energy of similar to 700 meV. This indicates that the interface quality of the MQW is not substantially affected by the presence of cracks. (C) 2008 Elsevier Ltd. All rights reserved.

Nyckelord: Intersubband, GaN, MBE, Surface cracks, Sapphire substrate, Template

Symposium on Wide Band Gap Semiconductor Nanostructures for Optoelectronic Applications held at the 2008 E-MRS Conference Strasbourg, FRANCE, MAY, 2008 European Mat Res Soc

Denna post skapades 2010-02-23.
CPL Pubid: 114208


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik



Chalmers infrastruktur