CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

M. A. Asadollahi ; J. Maury ; K. R. Patil ; M. Schalk ; A. Clark ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
Metabolic Engineering (1096-7176). Vol. 11 (2009), 6, p. 328-334.
[Artikel, refereegranskad vetenskaplig]

A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using Opt Gene as the modeling framework and minimization of metabolic adjustments (MOMA) as objective function. Deletion of NADPH-dependent glutamate dehydrogenase encoded by GDH1 was identified as the best target gene for the improvement of sesquiterpene biosynthesis in yeast. Deletion of this gene enhances the available NADPH in the cytosol for other NADPH requiring enzymes, including HMG-CoA reductase. However, since disruption of GDH1 impairs the ammonia utilization, simultaneous over-expression of the NADH-dependent glutamate dehydrogenase en coded by GDH2 was also considered in this study. Deletion of GDH1 led to an approximately 85% increase in the final cubebol titer. However, deletion of this gene also caused a significant decrease in the maximum specific growth rate. Over-expression of GDH2 did not show a further effect on the final cubebol titer but this alteration significantly improved the growth rate compared to the GDH1 deleted strain. (C) 2009 Elsevier Inc. All rights reserved.

Nyckelord: In silico metabolic engineering, Saccharomyces cerevisiae, Isoprenoid, Sesquiterpene, Cubebol, Glutamate dehydrogenase, Flux balance analysis, Minimization of metabolic adjustments, NADPH availability, high-level production, yeast candida-utilis, escherichia-coli, beta-carotene, food yeast, glutamate-dehydrogenase, ammonium, assimilation, catabolite repression, lycopene, biosynthesis



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2010-02-23. Senast ändrad 2014-10-27.
CPL Pubid: 114046

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)

Ämnesområden

Livsvetenskaper
Mikrobiologi

Chalmers infrastruktur