CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamic higher-order equations for finite rods

Peter D. Folkow (Institutionen för tillämpad mekanik, Dynamik) ; Karl Mauritsson (Institutionen för tillämpad mekanik, Dynamik)
Quarterly Journal of Mechanics and Applied Mathematics (0033-5614). Vol. 63 (2010), 1, p. 1-21.
[Artikel, refereegranskad vetenskaplig]

This work considers longitudinal wave propagation in circular cylindrical rods adopting Bostrom's power series expansion method in the radial coordinate. Equations of motion together with consistent sets of general lateral and end boundary conditions are derived in a systematic fashion up to arbitrary order using a generalized Hamilton's principle. Analytical comparisons are made between the present theory to low order and several classic theories. Numerical examples for eigenfrequencies, displacement and stress distributions are given for a number of finite rod structures. The results are presented for series expansion theories of different order and various classical theories, from which one may conclude that the present method generally models the rod accurately.

Nyckelord: approximate boundary-conditions, axisymmetric vibrations, cylindrical-shells, wave propagation, elastic plate, flexural waves, cylinders, frequencies, length, bars



Denna post skapades 2010-02-23. Senast ändrad 2016-08-22.
CPL Pubid: 113978

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik

Ämnesområden

Tillämpad matematik
Teknisk mekanik

Chalmers infrastruktur