CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

An improved method for dipole modeling in EEG-based source localization

Fredrik Edelvik ; Björn Andersson ; Stefan Jakobsson ; Stig Larsson (Institutionen för matematiska vetenskaper, matematik) ; Mikael Persson (Institutionen för signaler och system, Biomedicinsk elektromagnetik) ; Yazdan Shirvany (Institutionen för signaler och system, Biomedicinsk elektromagnetik)
World Congress on Medical Physics and Biomedical Engineering: Neuroengineering, Neural Systems, Rehabilitation and Prosthetics; Munich; Germany; 7 September 2009 through 12 September 2009 Vol. 25 (2009), 9, p. 146-149.
[Konferensbidrag, refereegranskat]

The inverse problem in EEG-based source localization is to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes. The brain sources are usually modeled as current dipoles which lead to a singularity in the right-hand side of the governing Poisson’s equation. Subtraction methods have been proposed as a remedy and in this paper an improved subtraction method for modeling the dipoles is presented. The accuracy is demonstrated for radial and tangential sources in layered sphere models and is to the best of the authors’ knowledge superior to previous methods for superficial sources. An additional advantage is that it produces a right hand side with few non-zeros which is beneficial for efficient solution of the inverse problem.

Nyckelord: epilepsy; EEG; finite element method; source reconstruction


http://www.wc2009.org/world-congress-2009/



Denna post skapades 2010-02-12. Senast ändrad 2016-06-09.
CPL Pubid: 112119

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
Institutionen för signaler och system, Biomedicinsk elektromagnetik

Ämnesområden

Tillämpad matematik
Medicinsk teknik

Chalmers infrastruktur