CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Structural distortions induced during stress relaxation affecting electrical transport of nanometer-thick La0.67(Ba,Ca)0.33MnO3 films

I.T. Serenkov ; V.I. Sakharov ; Yuri Boikov (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; V. A. Danilov ; M. P. Volkov ; Tord Claeson (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik)
Physica B: Condensed Matter (09214526). Vol. 404 (2010), 23-24, p. 5234-5236.
[Artikel, refereegranskad vetenskaplig]

X-ray diffraction (XRD) and medium-energy ion scattering (MEIS) were used to clarify distortions induced during mechanical stress relaxation in nanometer-thick epitaxial La0.67Ba0.33MnO3 (LBMO) and La0.67Ca0.33MnO3 (LCMO) films fabricated by pulsed laser deposition. It follows from measured XRD and MEIS spectra that LBMO films grown on mismatched LaAlO3 were partly relaxed in the main part of the film, leaving about 4 nm heavily strained portion close to the interface. The critical thickness of LCMO films grown on LaAlO3 substrates was several times larger than that of LBMO due to a better match in lattice parameters. Electro- and magneto-transport parameters of nanometer-thick manganite films grown on mismatched substrates differed markedly from those of LBMO and LCMO layers nucleated and grown on well-matched ones because of non-stoichiometry, biaxial mechanical stresses, and phase separation. The resistivity ρ of manganite films grown coherently at a substrate with small mismatch obeyed the relation ρ=ρ12(H)T4.5 at temperatures well below the Curie point. Parameter ρ1 was temperature T and magnetic field H independent while ρ2 was temperature independent but decreased linearly with increasing H.

Nyckelord: Distortion of stoichiometry, Heterostructure, Interface; Mechanical stress

Denna post skapades 2010-01-29.
CPL Pubid: 111195


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik



Chalmers infrastruktur