CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Microfluidic Diluter Based on Pulse Width Flow Modulation

Alar Ainla (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Irep Gözen (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Owe Orwar (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Aldo Jesorka (Institutionen för kemi- och bioteknik, Fysikalisk kemi)
Analytical Chemistry (0003-2700). Vol. 81 (2009), 13, p. 5549-5556.
[Artikel, refereegranskad vetenskaplig]

We demonstrate that pulse width flow modulation (PWFM) can be used to design fasts accurate, and precise multi-stage dilution modules for microfluidic devices. The PWFM stage unit presented here yields 10-fold dilution, but several PWFM stages can be connected in series to yield higher-order dilutions. We have combined two stages in a device thus capable of diluting up to 100-fold, and we have experimentally determined a set of rules that can be conveniently utilized to design multistage diluters. Microfabrication with resist-based molds yielded geometrical channel height variances of 7% (22.9(16) mu m) with corresponding hydraulic resistance variances of similar to 20%. Pulsing frequencies, channel lengths, and flow pressures can be chosen within a wide range to establish the desired diluter properties. Finally, we illustrate the benefits of on-chip dilution in an example application where we investigate the effect of the Ca2+ concentration on a phospholipid bilayer spreading from a membrane reservoir onto a SiO2 surface. This is one of many possible applications where flexible concentration control is desirable.

Nyckelord: dynamic chemical signals, hydrophilic surfaces, nanoliter-scale, device, generation, liposomes, membranes, biosensors, networks, bilayers



Denna post skapades 2010-01-14. Senast ändrad 2016-04-28.
CPL Pubid: 107232

 

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)

Ämnesområden

Kemi
Fysikalisk kemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


The Multifunctional Pipette. A Microfluidic Technology for the Biosciences