CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fatigue damage assessment for a spectral model of non-Gaussian random loads

Sofia Åberg ; Krys Podgorski ; Igor Rychlik (Institutionen för matematiska vetenskaper, matematisk statistik)
Probabilistic Engineering Mechanics (0266-8920). Vol. 24 (2009), 4, p. 608-617.
[Artikel, refereegranskad vetenskaplig]

In this paper, a new model for random loads-the Laplace driven moving average-is presented. The model is second order, non-Gaussian, and strictly stationary. It shares with its Gaussian counterpart the ability to model any spectrum but has additional flexibility to model the skewness and kurtosis of the marginal distribution. Unlike most other non-Gaussian models proposed in the literature, such as the transformed Gaussian or Volterra series models, the new model is no longer derivable from Gaussian processes. In the paper, a summary of the properties of the new model is given and its upcrossing intensities are evaluated. Then it is used to estimate fatigue damage both from simulations and in terms of an upper bound that is of particular use for narrowband spectra. © 2009 Elsevier Ltd. All rights reserved.

Nyckelord: Fatigue damage; Laplace distribution; Moving average; Non-Gaussian process; Rice's formula; Spectral density

Denna post skapades 2010-01-12. Senast ändrad 2016-07-25.
CPL Pubid: 106663


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)


Tillämpad matematik
Matematisk statistik

Chalmers infrastruktur