CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the design of structural junctions for the purpose of hybrid passive-active vibration control

Jonas Svensson (Institutionen för bygg- och miljöteknik, Teknisk akustik, Vibroakustik) ; Patrik Andersson (Institutionen för bygg- och miljöteknik, Teknisk akustik, Vibroakustik) ; Wolfgang Kropp (Institutionen för bygg- och miljöteknik, Teknisk akustik, Vibroakustik)
Journal of Sound and Vibration (0022-460X). Vol. 329 (2010), 9, p. 1274-1288.
[Artikel, refereegranskad vetenskaplig]

A theoretical investigation of wave scattering and the active modification of wave scattering at structural junctions is presented. A resonant and a non-resonant Euler–Bernoulli beam are coupled, and an external force is introduced at the junction. The external force is intended for feedforward control in order to manipulate the scattering properties at the junction. The purpose of the investigated control law is to make the junction non-reflective in the case of an incident bending wave. The control effort and the resulting power flow are investigated for different properties of the beams. By introducing damping in the resonant beam all incidence wave power is absorbed either passively, in the resonant beam, or actively, by the force. The results form the basis for a discussion of the possible benefits of using such a configuration for hybrid passive–active vibration control. The results show that for certain ratios of bending stiffness and mass the presented hybrid passive–active solution may offer advantages compared to purely passive or purely active solutions.

Denna post skapades 2010-01-12. Senast ändrad 2015-07-01.
CPL Pubid: 106608


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för bygg- och miljöteknik, Teknisk akustik, Vibroakustik (2005-2017)


Övrig teknisk mekanik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Active Junction Control and Piezoelectric Hybrid Damping for Improving the Acoustic Performance of Lightweight Structures