CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Stability for Rayleigh-Benard convective solutions of the Boltzmann equation

Leif Arkeryd (Institutionen för matematiska vetenskaper, matematik) ; R. Esposito ; R. Marra ; A. Nouri
Archive for rational mechanics and analysis (0003-9527). Vol. 198 (2010), 1, p. 125-187.
[Artikel, refereegranskad vetenskaplig]

We consider the Boltzmann equation for a gas in a horizontal slab, subject to a gravitational force. The boundary conditions are of diffusive type, specifying the wall temperatures, so that the top temperature is lower than the bottom one (Benard setup). We consider a 2-dimensional convective stationary solution, which for small Knudsen numbers is close to the convective stationary solution of the Oberbeck-Boussinesq equations, near and above the bifurcation point, and prove its stability under 2-d small perturbations, for Rayleigh numbers above and close to the bifurcation point and for small Knudsen numbers.



Denna post skapades 2010-01-12. Senast ändrad 2010-10-27.
CPL Pubid: 106519

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur