CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

$L_p$ and eigenvalue error estimates for the discrete ordinates method for two-dimensional neutron transport

Mohammad Asadzadeh (Institutionen för matematik)
SIAM Journal on Numerical Analysis Vol. 26 (1989), 1, p. 66-87.
[Artikel, refereegranskad vetenskaplig]

The convergence of the discrete ordinates method is studied for angular discretization of the neutron transport equation for a two-dimensional model problem with the constant total cross section and isotropic scattering. Considering a symmetric set of quadrature points on the unit circle, error estimates are derived for the scalar flux in $L_P $ norms for $1 \leqq p \leqq \infty $. A postprocessing procedure giving improved $L_\infty $ estimates is also analyzed. Finally error estimates are given for simple isolated eigenvalues of the solution operator.

Nyckelord: neutron transport equation, discrete ordinates method scalar flux, LP estimates, eigenvalue estimates, postprocessing, quadrature rule

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103216


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)


Tillämpad matematik

Chalmers infrastruktur