CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The discrete ordinates method for the neutron transport equation in an infinite cylindrical domain

Mohammad Asadzadeh (Institutionen för matematik) ; Peter Kumlin (Institutionen för matematik) ; Stig Larsson (Institutionen för matematik)
Mathematical Models and Methods in Applied Science Vol. 2 (1992), 3, p. 317-338.
[Artikel, refereegranskad vetenskaplig]

We prove a regularity result for a Fredholm integral equation with weakly singular kernel, arising in connection with the neutron transport equation in an infinite cylindrical domain. The theorem states that the solution has almost two derivatives in L1, and is proved using Besov space techniques. This result is applied in the error analysis of the discrete ordinates method for the numerical solution of the neutron transport equation. We derive an error estimate in the L1-norm for the scalar flux, and as a consequence, we obtain an error bound for the critical eigenvalue.

Nyckelord: Discrete Ordinates, Neutron transport, Quardature rule, Besov spaces, Sobolev spaces, Superconvergence

Denna post skapades 2009-12-09. Senast ändrad 2014-10-09.
CPL Pubid: 103213


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)


Tillämpad matematik

Chalmers infrastruktur